vermont

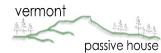
passive house

Passive House Buildings – Mitigating Climate Change

Implementing the Passive House Building Standard to minimize the energy intensity and CO_2 emissions in buildings

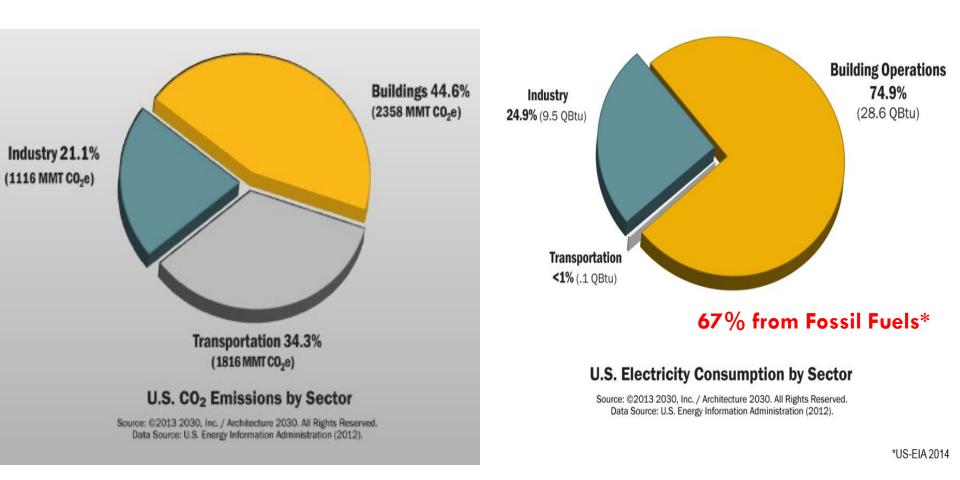
House Committee on Natural Resources Act 250 & Climate Change

www.vtph.org January 23, 2020


Presenters Credentials

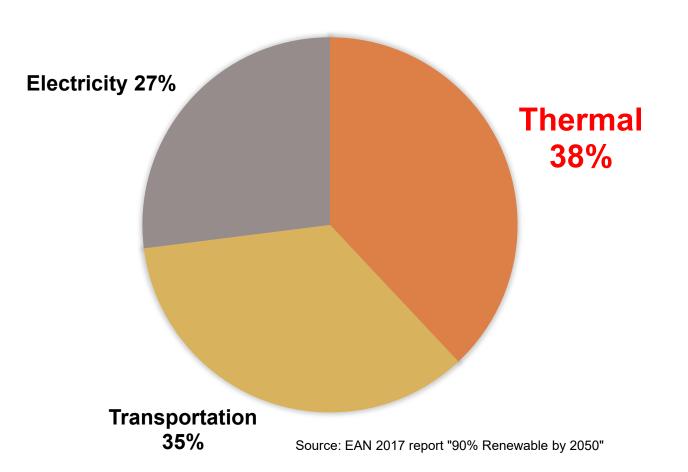
Peg Elmer Hough

- 40+ Years Veteran Planner
- Town Planner/Zoning Administrator in Chittenden County
- Trained in details of A250 working for the Environmental Board, then ANR (managed "Act 250 Club" across state agencies and staffed Gov Kunin's Commission on VT's Future)
- VNRC Land Use Program Director, then Planning Director at Commerce Agency (incl'd first State Hazard Mitigation Plan) guiding emerging smart growth initiatives
- Prof. of land use law and policy at VLS, appointed to "smart growth seat" on Downtown Board

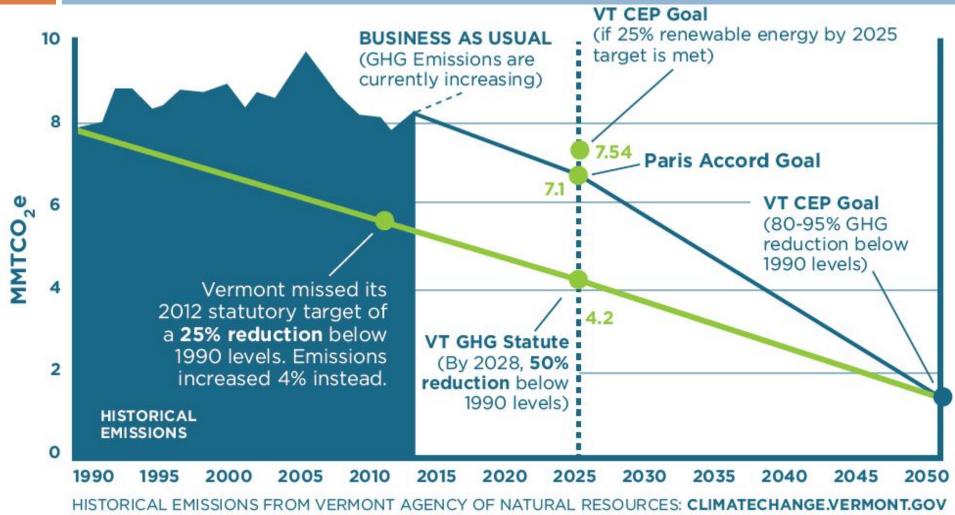

Enrique Bueno

- Chemical Engineer
- 40 Years experience in basic industries Cement, Aluminum and Steel production
- 9 Years specialized in Building Science and Passive House Buildings
- Founding member of the VT Passive House NPO 5013C
- Board Chair of the VT Passive House organization
- Certified Passive House Consultant

The Problem


Building Operations and Materials have a mayor impact on CO₂ emissions

The Problem in VT 76% of Thermal comes from Fossil Fuels


VT ENERGY USE BY SECTOR

The Problem in VT

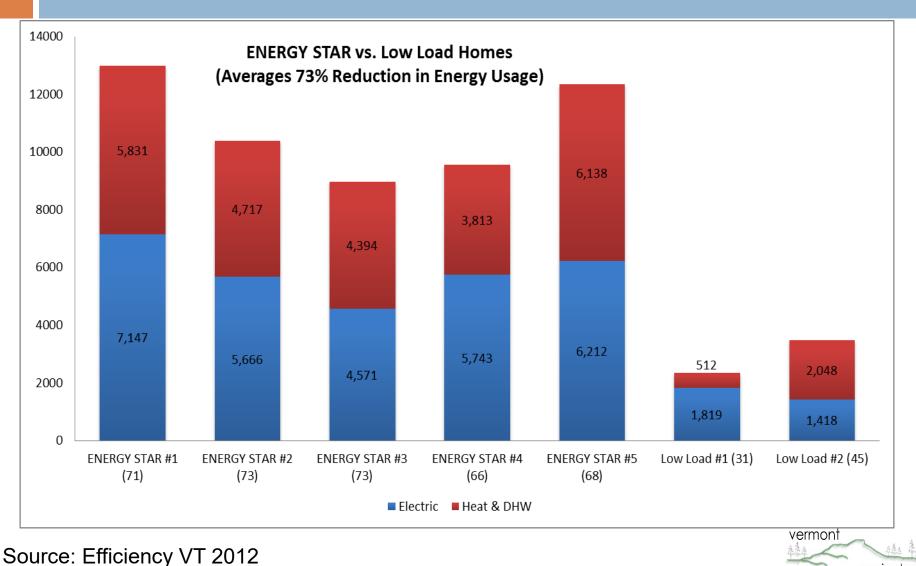
VT's CO2 emissions increased by 11% from 2012 to 2015 by 2015 we were 55% above the goal

What are we proposing to contribute to the Solution? Adoption of the Passive House Standard as RBES

ZERH Staircase

Energy Efficiency & Renewable Energy

				Solar Ready	Solar Ready
				Eff. Comps.& H ₂ O	Eff. Comps.& H ₂ O
ZERO ENERGY READY HOME US DEPARTMENT OF ENERGY		EPA Indoor Air Package	EPA Indoor Air Package		
				Optimized Duct Location	Optimized Duct Location
		HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV	HVAC QI plus HRV
		Water Management	Water Management	Water Management	Water Management
Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent PHIUS Verif.
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS+


passive house

Act 250 - Criterion 9 (F)

F) Energy conservation. A permit will be granted when it has been demonstrated by the applicant that, in addition to all other applicable criteria, the planning and design of the subdivision or development reflect the principles of energy conservation, including reduction of greenhouse gas emissions from the use of energy, and incorporate the best available technology for efficient use or recovery of energy. An applicant seeking an affirmative finding under this criterion shall provide evidence that the subdivision or development complies with the applicable building energy standards under 30 V.S.A. § 51 or 53, *including the stretch code* for residential buildings adopted pursuant to 30 V.S.A. §51(d).

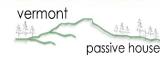
Actual Energy Consumption Comparison of five Energy Star Homes, one Passive House and one Low Load

passive house

RBES Stretch Code is stuck !

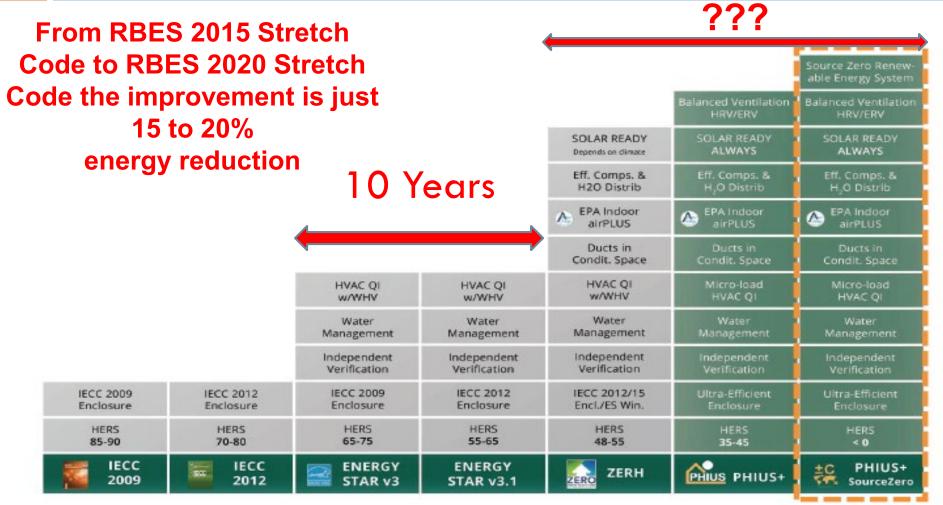
ZERH Staircase

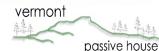
ENERGY


Energy Efficiency & Renewable Energy

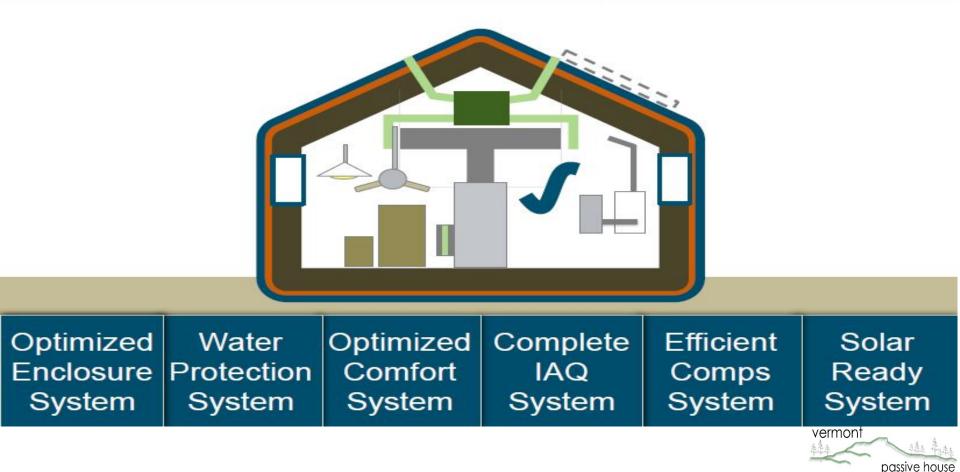
		he	Solar Ready	Solar Ready	
				Eff. Comps.& H ₂ O	Eff. Comps.& H ₂ O
ZERO ENERGY READY HOME				EPA Indoor Air Package	EPA Indoor Air Package
				Optimized Duct Location	Optimized Duct Location
		HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV	HVAC QI plus HRV
		Water Management	Water Management	Water Management	Water Management
Independent HERS Verif.	Independent PHIUS Verif.				
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS+

passive house


RBES should be here !


	Passive	House				Source Zero Renew able Energy System
	Source	7ero			Balanced Ventilation HRV/ERV	Balanced Ventilatio HRV/ERV
				SOLAR READY Depends on dimace	SOLAR READY ALWAYS	SOLAR READY ALWAYS
				Eff. Comps. & H2O Distrib	Eff. Comps. & H ₂ O Distrib	Eff. Comps. & H ₂ O Distrib
				A EPA Indoor airPLUS	A EPA Indoor airPLUS	epa Indoor airPLUS
				Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
		HVAC QI W/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC Qi
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS PHIUS+	C PHIUS+

How long is it taking ?



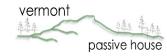
Where does a Zero Energy Ready Building Start According to the DOE ?

Zero Starts with the Enclosure

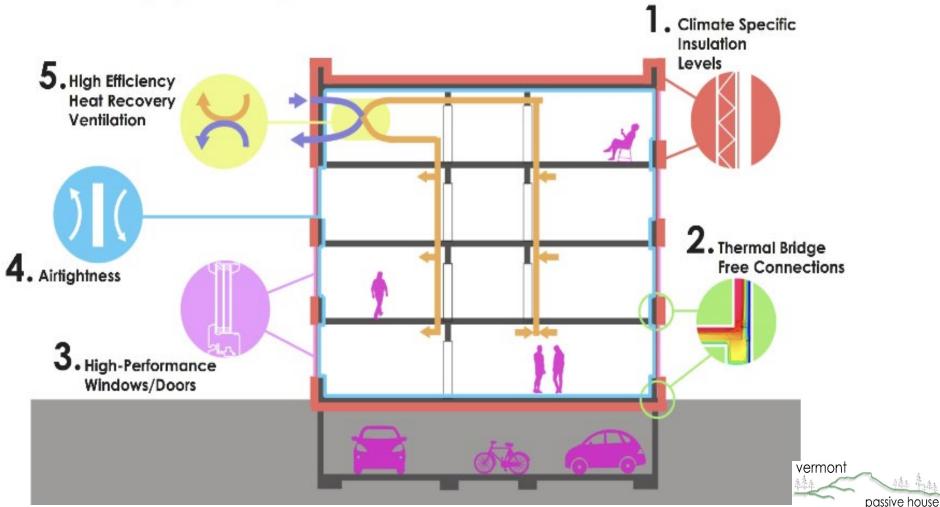
Energy Efficiency & Renewable Energy

DOE's Recognition of the Passive House Standard

Consumer Choice Made Simple



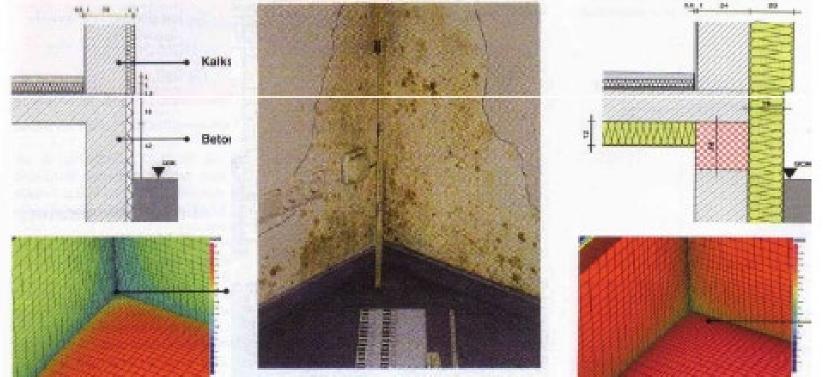
Energy Efficiency & Renewable Energy


Efficiency VT's Multifamily Incentives for the Passive House Standard

	Energy modeling for building	50% of modeling cost (up to \$5,000) if conducted early in support of integrated design process; must include EVT Energy Consultant in process.
ncentives	Thermal Shell commissioning	50% of commissioning cost (up to \$5,000) if air leakage target is 0.10 cfm50/sq. ft. exterior building shell area or less
	Passive House	Additional \$300 per unit incentive for successful Passive House certification.

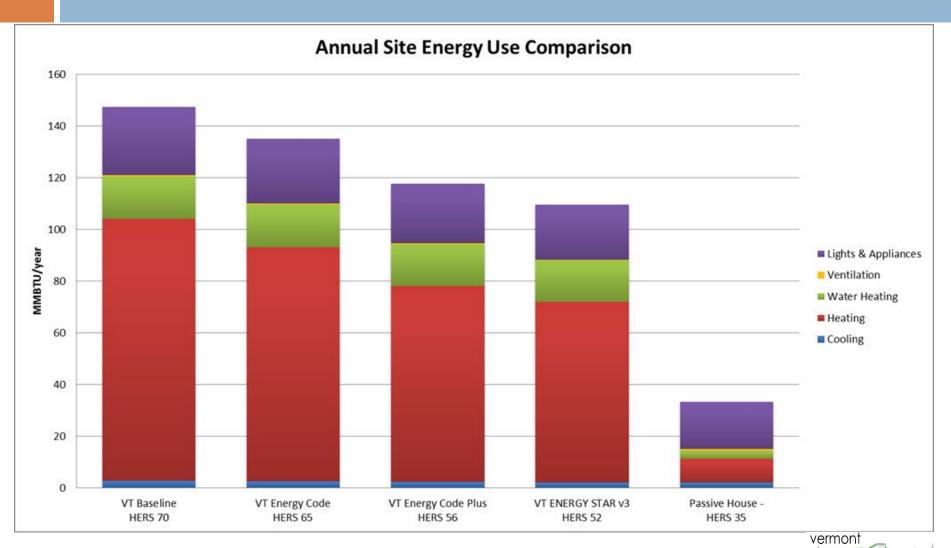
PASSIVE BUILDING PRINCIPLES

Five key principles:



立意生

MINIMIZE LOSS: ELIMINATING THE THERMAL BRIDGE MINIMIZES HEAT LOSS CONDENSATION/BUILDING DETERIORATION


BAD = high heat loss + risk of condensation

GOOD = low heat loss, warm interior surface + no condensation

Minimum temperature 48 F below dew-point, risk of condensation Minimum temperature 58 Fabove dew-point, no risk of condensation

Energy Usage Comparison

Source: Efficiency VT - 2012


passive house

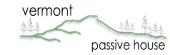
How does it relate to other programs?

Energy Efficient Housing Concepts in the US:

vermen Energy ex	ode (RBES): required for all new construction but not enforced
Energy Star 3.0: D	oE Program (30% more efficient than Code)
Building America: I EStar)	DoE super energy savings Program (15% better than
Passive House:	 90% more efficient than VT RBES Code 70% more efficient than Energy Star 55% more efficient than Building America

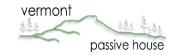
Can be cost equivalent to conventional building for single family and equal or less for multifamily and commercial construction.

Passive House Projects North East USA

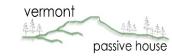

East Harlem - NYC East 111th Street development

Mixed-use, 655 affordable apartments complex including - Seniors' housing

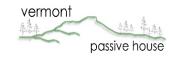
- Harlem RBI/Dream Charter School
- YMCA facility
- Mount Sinai Health Center
- Urban Market & Retail Space
- Public gardens


Income from \$19,050 to \$106,080

Village Center Apartments Brewer, ME


48 Affordable **Housing Units** 51,778 SqFt Interior Floor Area 1,2 & 3 Bedroom units 3 common areas 1 dog washing room \$135/sqft construction cost

Village Center Apartments Brewer, ME


Conventional **Double Stud-**Wall filled with cellulose that any builder can build **Not Rocket** Science

Gilford Village Knolls III New Hampshire

Multifamily Affordable Senior Housing 24 Units 20,571 ft²


Twin Pines Housing –West Lebanon NH Maclay Architects – Waitsfield VT

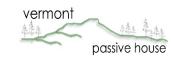
AREA: 27,000 sf Net Positive Energy ILFI Net Zero Energy PHIUS+ 2015

ENERGY INTENSITY: 25 kBTU/sf-yr (modeled) Air Infiltration: 0.044 cfm50/sf (actual) Solar PV array size: 180 kW

COMPLETION: 2019

Passive House Projects Vermont

ELM PLACE


a conventional building

@ only 2% more cost

ELM PLACE -Best Overall Passive Building Winner

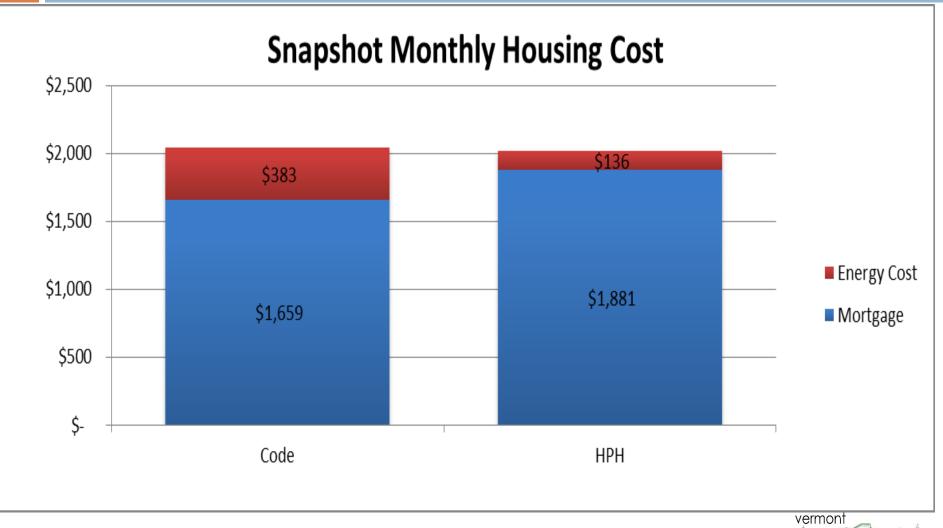
Multifamily project category Winner Affordable project category Honorable Mention

2017 PHIUS Passive House Projects Competition 2017 PHIUS Passive House Projects Competition

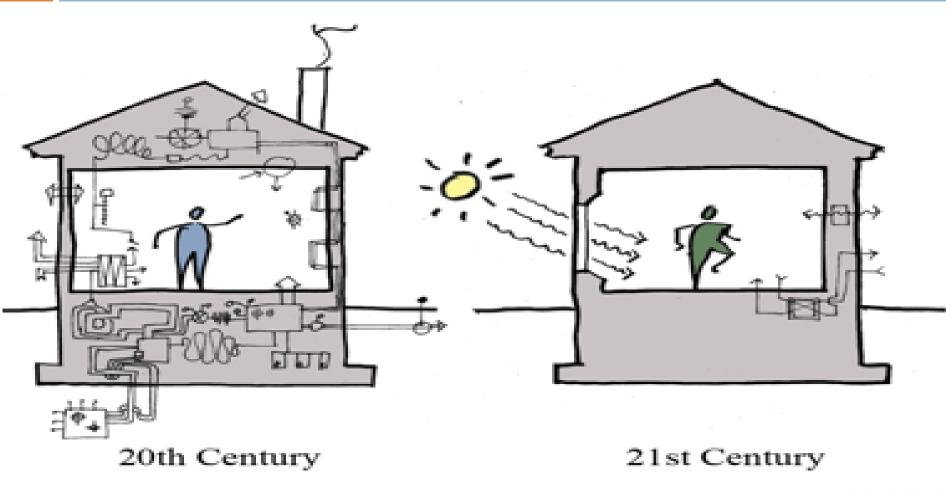
Elm Place Senior Housing, Milton-VT Passive House vs. Stretch Code 2020

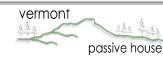
Space	Heating demand	5.38	kBTU/(ft2yr)
heating	Heating load	4.91	BTU/(hr.ft2)
Primary energy	dehumidification, DHW, lighting, electrical appliances	59	kBTU/(ft2yr)
Airtightness		0.7	ACH50

Passive House 68% better than Stretch Code

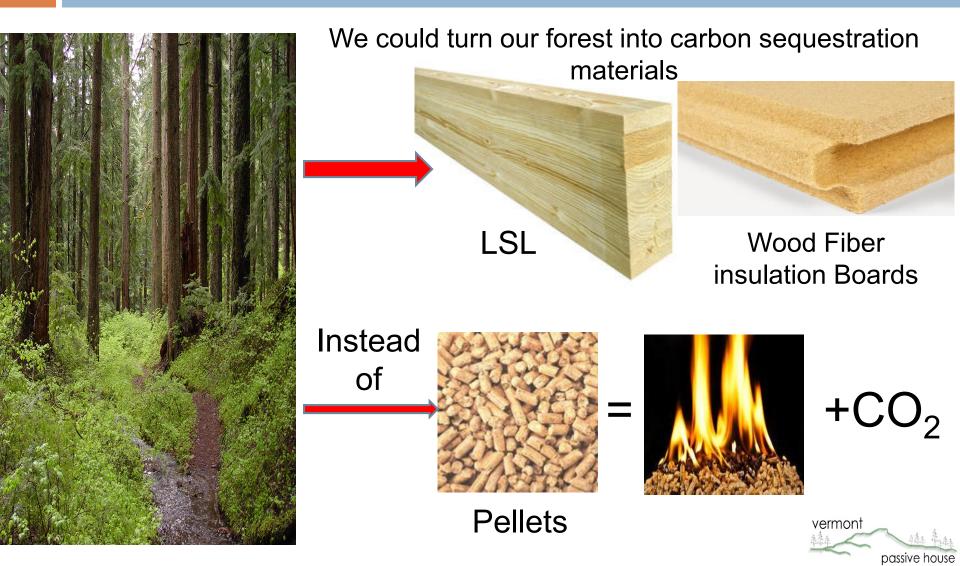

Space heating	Heating demand Heating load	44.00	kBTU/(ft2yr) BTU/(hr.ft2)
Primary energy	dehumidification, DHW, lighting, electrical appliances	75	kBTU/(ft2yr)
Airtightness		3	ACH50

Stretch Code 217% More Heating Demand 27% More Primary Energy

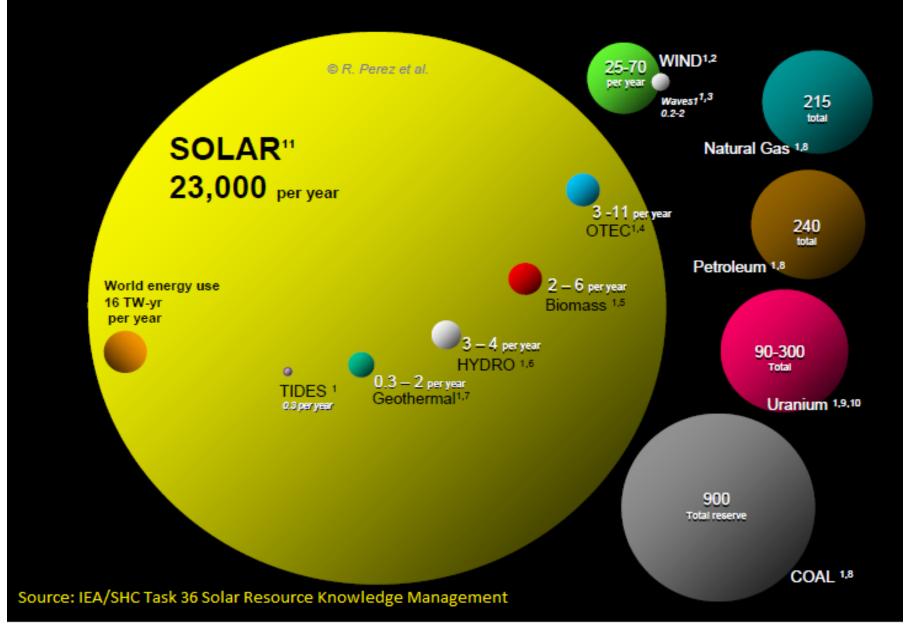

Cost Analysis for High Performance Single Family Home


passive house

Source: Efficiency VT

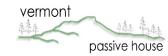

Passive House Moves Toward Simplicity

AR&T Architects


Economic Opportunities for VT Bio Mass and Bio Fuels are not the Answer

There are lots of plant-based carbon-storing building materials

passive house



Ē

Figure 1: Comparing finite and renewable planetary energy reserves (Terawattyears). Total recoverable reserves are shown for the finite resources. Yearly potential is shown for the renewables.

What We Have and What We Lack

- We have the science
- We have the craftmanship
- We have of shelf materials and components
- We lack legislation !

VT Legislature's URGENT MISSION

VT Legislature must act now to reduce the energy waste and CO2 emissions related to buildings by:


- 1) Enacting legislation to require builders and contractors' registration
- 2) Requiring builders and contractors' certification
- Boldly and immediately upgrading the VT building code RBES to Passive House levels of energy and carbon reductions
- 4) Designate an authority to enforce the newly adopted building code
- 5) Designate an authority for work verification

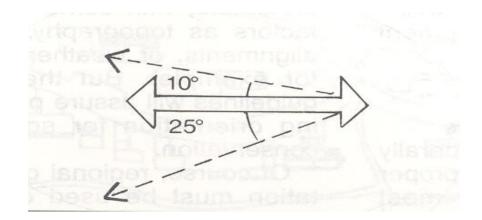
Recommendation: Edit 9 (F)

F) ... the planning and design of the subdivision or development reflect the principles of energy conservation, including reduction of greenhouse gas emissions from the use of energy **and high embodied energy building materials...**

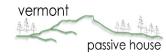
...An applicant seeking an affirmative finding under this criterion shall provide evidence that the subdivision or development complies with the applicable building energy standards of Passive House or DOE ZERH programs, which supersede the stretch code for residential buildings.

Hazard Mitigation and Climate Adaptation

- VT's most common impact of extended power outages, from our summer and winter storms
- VT Dept of Health info on mortality increasing with extreme heat events
- Combine those two bullets, with the thought of several days without power
- We need comfortable buildings, providing for passive heating and cooling!


Encourage landscaping as a tool to maximize energy efficient heating and cooling

Street layout to maximize solar access


• In Vermont, the best street orientation, to maximize southern exposure for building design, is east-west

• This may have the greatest influence on -sets the framework for -- lot and building layout.

Recommendation: Edit 9(M)

(M) Climate adaptation. The development or subdivision will employ building orientation, site and landscape design, and building design to maximize passive heating and cooling and that are sufficient to enable the improvements to be sited and constructed, including buildings, roads, and other infrastructure, to withstand and adapt to the effects of climate change, including extreme temperature events, wind, and precipitation reasonably projected at the time of application.

Thank you

vermont

passive house

Because we care about you saving money and living healthy, and care about the environment, our legacy and our future, we design and build energy efficient buildings.

Peg Elmer Hough - elmer.peg1@gmail.com Enrique Bueno - ebueno@eplusbuildings.com

